Aspect Analytics

Dedicated Software to Support High Throughput Spatial Multi-Omics Applications

> Marc Claesen, PhD Co-founder and Chief Executive Officer

marc.claesen@aspect-analytics.com

Presentation outline

- 1. Introduction
- 2. Our spatial multi-omics approach
- 3. Case studies
- 4. Conclusion

Aspect Analytics in a nutshell

weave

Bioinformatics solutions provider for spatial biology

- Weave cloud platform for spatial biology data management and analysis
 - Fit-for-purpose tools: customizable to fit core lab workflows
- Bioinformatics services: multi-omics integrations, data-driven QC, software co-development, ...

Our mission

- Provide a **unified platform solution** for spatial biology data analysis
- Unlock full potential of **spatial multi-omics in high-throughput contexts**

Spatial multi-omics

Improving our understanding of tissue biology

- Spatial context is a key driver of complex biology
- Multi-omics needed to capture full biological process

Spatial multi-omics

Improving our understanding of tissue biology

- Spatial context is a key driver of complex biology
- Multi-omics needed to capture full biological process

Data analysis challenges in spatial multi-omics

- Multiple assays needed to target all omics layers
 - Integrate data across sections and vendor formats
- Large data volumes and complexity
 - Multi-petabyte storage & on-demand computations
- Interdisciplinary collaboration with many stakeholders
 - Team communication drives data analysis efficiency

Broad assay coverage

Spatial transcriptomics

- Subcellular assays: Xenium, CosMx, MERSCOPE
- Minibulk assays: Visium, Visium HD, GeoMx, Seeker

Spatial proteomics

- **mIF based:** COMET, PhenoCycler, CellDIVE, CellScape
- **Other approaches:** Hyperion (IMC), MALDI-IHC

Mass spectrometry imaging

- **instruments:** timsTOF fleX, solariX, scimaX, MRT, Orbitrap, Synapt, iMScope (+ imzML)
- **analytes:** drugs, lipids, glycans, metabolites, peptides, proteins

Broad assay coverage

Spatial transcriptomics

- Subcellular assays: Xenium, CosMx, MERSCOPE
- Minibulk assays: Visium, Visium HD, GeoMx, Seeker

Spatial proteomics

- **mIF based:** COMET, PhenoCycler, CellDIVE, CellScape
- **Other approaches:** Hyperion (IMC), MALDI-IHC

Mass spectrometry imaging

- **instruments:** timsTOF fleX, solariX, scimaX, MRT, Orbitrap, Synapt, iMScope (+ imzML)
- **analytes:** drugs, lipids, glycans, metabolites, peptides, proteins

Aspect Analytics

Spatial multi-omics data integration across any combo of these assays

Check booth #3 for live demos!

Our spatial multi-omics approach

Spatial multi-omics data comes in stacks

- morphology & pathologist annotations
- spatial transcriptomics
- spatial proteomics
- spatial metabolomics
- other new technologies ...
- non-spatial (bulk proteomics, scRNAseq, ...)

Spatial multi-omics data comes in stacks

morphology & pathologist annotations

- spatial transcriptomics
- spatial proteomics
- spatial metabolomics
- other new technologies ...

non-spatial (bulk proteomics, scRNAseq, ...)

Data integration is challenging due to differences in

- **Coordinate systems** due to spatial resolution, different sections, probe size, ...
- **Data formats**: each assay has its own proprietary vendor format

weave platform for spatial biology

norphology	pathologist annotations	spatial transcriptomics	spatial proteomics	spatial metabolomics	other data

Stack *fusion*

- Integrate readouts across assays and sections to obtain unified, holistic dataset
- Enables true spatial multi-omics using any number and combination of assays

weave platform for spatial biology

morphology	pathologist annotations	spatial transcriptomics	spatial proteomics	spatial metabolomics	other data

Stack *fusion*

- Integrate readouts across assays and sections to obtain unified, holistic dataset
- Enables true spatial multi-omics using any number and combination of assays
- Facilitate downstream analysis and interactive visualization via dataframe-like interfaces

multimodal visualization

unified data structure

Demo / Projects / Cloud-serving Conference Demos / Reports / AA Mouse Brain MALDI MSI, Multiplex IF + Cell Segmentation, Histology + Morphological Embedding

169,441 Cells 🛛 🔹 🕶

Scatterplot (UMAP)

Spatial Layers 169,441 Cells 🛛 🔹 🗸

Heatmap

169,441 Cells × 12 Markers, with 169,441 Cells selected 🛛 🐲 🗸

Demo / Projects / Cloud-serving Conference Demos / Reports / AA Mouse Brain MALDI MSI, Multiplex IF + Cell Segmentation, Histology + Morphological Embedding

Cloud platform for spatial biology analysis

Case studies

Spatial profiling of prostate cancer (PCa)

Goal: improving understanding of PCa biology via spatial biology

- Roughly **1** in **8** men will be diagnosed with PCa during their lifetime
- PCa is a very complex disease
 - high inter -and intra-tumoral heterogeneity
 - multiple morphological disease states in single section ٠
 - involves molecular changes across multiple omics classes ٠

Aspect

Zhang et al., bioRxiv 2023.08.28.55505 https://doi.org/10.1101/2023.08.28.555056

Wanqiu Zhang	Wout Devlies
Xander Spotbeen	Chui Yan Mah
Sebastiaan Vanuytven	Lisa M Butler
Sam Kint	Massimo Loda
Tassiani Sarretto	Steven Joniau
Fabio Socciarelli	Bart De Moor
Katy Vandereyken	Alejandro Sifrim
Jonas Dehairs	Shane R. Ellis
Jakub Idkowiak	Thierry Voet
David Wouters	Marc Claesen
Jose Ignacio A. Larizgoitia	Nico Verbeeck
Gabriele Partel	Johannes V. Swinnen
Alice Ly	
Vincent de Laat	
Maria José Q Mantas	
Thomas Gevaert	
	18
	TO

Spatial profiling of prostate cancer (PCa)

Goal: improving understanding of PCa biology via spatial biology

- Roughly 1 in 8 men will be diagnosed with PCa during their lifetime
- PCa is a very complex disease
 - high inter -and intra-tumoral heterogeneity
 - multiple morphological disease states in single section
 - involves molecular changes across multiple omics classes

High-level design:

- 16 samples coming from 8 patients 8 malignant and 8 non-malignant biopsies
- Histology and multi-omics combination:
 - Spatial analysis: spatial transcriptomics (Visium) + spatial lipidomics (Orbitrap)
 - Bulk: **snRNAseq** + **lipidomics** (LC-MS)

Aspect

Zhang et al., bioRxiv 2023.08.28.55505 https://doi.org/10.1101/2023.08.28.555056

Stack design and experimental approach

Step 1: multimodal registration pipeline

Approach

- Inter-section registration via H&E's
 - H&E available for both Visium & MSI sections
 - Shared modality facilitates registration
- Registrations per section of omics and H&E
 - MSI to MSI H&E, Visium to Visium H&E
- All **registrations are non-rigid** to account for serial sections and complex sample deformation

Outcome

• Full coordinate transformation available from between any layer combination in the stack

Aspect Analytics

Step 2: data integration to Visium spots

Principled strategy for data integration

- Different spatial footprints between assays
 - MSI: 30 micrometer per pixel
 - Visium: 55 micrometer per spot
- We matched MSI pixels to Visium spots by weighing their spatial overlap

Outcome

- Integrated data structure for downstream analysis
 - Aggregated, representative mass spectrum for each Visium spot

	Transcripts	Lipids	Proteins	Cell types	
G	*				Aspect Analytics
	-				
• • • •	*				
	►				
	*				
	•				

Spatial correlation / anticorrelation

NORMAL SAMPLES

High positive correlation in normal samples

Gene: MSMB

NORMAL SAMPLES

AL ES

: :

-

High positive correlation in normal samples

Gene: MSMB

NORMAL SAMPLES

:

High positive correlation in normal samples

Almost no correlation in cancer samples

6.00
6.00
6.00
6.00
6.00
6.00 . . .

.....

NORMAL SAMPLES

CANCER SAMPLES

175

· 0.04 • 0.72 • 0.00 • 0.00

. . . .

High positive correlation in normal samples

Almost no correlation in cancer samples

: .

NORMAL SAMPLES

CANCER

SAMPLES

100

. . . .

Gene: MSMB

6.30
6.40
6.00
6.75
6.30 : ...

Almost no correlation in cancer samples

High positive

correlation in normal

samples

.....

::

High-grade serous ovarian cancer (HGSC)

Ovarian cancer is the most lethal gynecologic malignancy

• HGSC is the most common histotype, accounting for over 70% of all ovarian cancer deaths

Current treatment regime:

• various combinations of surgery and chemotherapy

MD Anderson uses follow up laparoscopy (6-8 weeks) to look for minimum residual disease (MRD)

 No biomarkers to predict development of MRD or mechanism of chemoresistance

MDAnderson Cancer Center

Making Cancer History®

Erin Seeley

The University of Texas at

Aspect Analytics

34

Materials + Methods - Tissue stack generation

Cohort (8 samples)

Measurement Stack (6 modalities)

Aspect Analytics

Why combine modalities?

Immunofluorescence (IF) provides high resolution images where we can **identify** and spatially segment **individual cells**

The IF markers allow us to find the **"type"** of the cell using **previous knowledge**

MSI provides novel molecular information that can only be obtained using the technique

Describe novel spatial environments by molecular signals

Step 1: multimodal co-registrations

Step 1: multimodal co-registrations

Step 1: multimodal co-registrations

Step 2: matching MSI pixel footprint

MSI pixels 1-n...

Correlating molecular readouts

Data Pairs

Differential MSI signals by cell type aggregation (tumor vs CAFs)

Tumor

m/z 1742.5924 -Hex5HexNAc4NeuGc1_mouse

m/z 1325.757 - histone H4

m/z 128.0354 - Pyroglutamic acid

Spatial exploration of Tumor-Stroma interface

Interface

5

1000 µm

Area N	Area Normalized Cell Counts per Relative Interface Distance 199 Distance Bins × 29 Cell Typ 💠 🗸						
- Distance Bin Set	B cells CAFs CD3 CD4 T cells CD3 CD8 T cells CD3 T cells CD4 T cells CD1 A1+ CAFs C01 A1+ CAFs C01 A1+ CAFs	Endothelial cells FAP+ CAFs FAP+ CAFs Myeloid bineage NK cells Bineage NKT Cells Other r-	Proliferating tumor Regulatory T cells Stroma TIGIT ₊ Activated A	Tight, CD3 CD8 Tight, CD3 CD8 Tight, NKT Cell, Tight, Action Tight, Acti			
Distance Bins							

Xenium reproducibility analysis

Goal: assess reproducibility of Xenium assay

- Analyzed Xenium data acquired from 2 serial sections
 - Experiments run by different operators
- Performed the analysis on **3 human carcinoma FFPE tissue types**

Vidyodhaya Sundaram Rikita Gakhar

Xenium reproducibility analysis

- Automatic registration between each pair of Xenium data sets
 - Per section, DAPI to H&E stained microscopy
 - Between sections, H&E to H&E
- Joint data visualization of each pair into a single view

ABCC11 for each section (red/green)

MYLK transcripts per section

MYLK density per section

Aspect Analytics

Statistical check

Analysis 2: assess whether transcript count distributions are comparable

- Stratified across gross morphological regions defined by expert pathologists
- Non-parametric KS test for distribution similarity per region x gene pair

Tissues	Tumor region	Stroma region	Immune region
Breast	90%	90%	89%
Colon	98%	94%	99%
Lung	94%	100%	99%

Percentage of genes with equivalent distribution per region.

Breast tissue

Colon tissue

Xenium - Visium comparison

Analysis 3: check concordance of Xenium & Visium on same section

• Investigate gene expression in same area (here CXCL9)

CXCL9 Xenium (spots)

CXCL9 Xenium (density)

CXCL9 Visium (spots)

CXCL9 overlay

Conclusion

Conclusion

Cloud platform for spatial multi-omics

- Foundation for data management and analysis
- Customized fit-for-purpose data workflows
- Vendor neutral

Collaboration & services

- Research partner for high-end bioinformatics
- Development of new assays and applications
- Deep integration with vendors

Addressing spatial multi-omics challenges

- Integration across analytical platforms
- Supporting high-throughput workflows
- Effective communication of spatial omics insights

Aspect Analytics

info@aspect-analytics.com https://www.aspect-analytics.com