

## Advancing Precision Oncology through Al-Enhanced Spatial Image Analysis and Multiplex Assays

Lorenz Rognoni, PhD Director Image Data Science, Ultivue

11<sup>th</sup> July 2024



#### **The Tumor Microenvironment**



Cui et al., Int. J. Mol. Sci. (2016) 17, 1942

# Ultivue

# Complexity of the tumor microenvironment is driving the need for multiplex marker detection in tissue samples

Hematoxylin & Eosin (H&E)



Morphology determines diagnosis Immunohistochemistry

(IHC)



- Single protein detection (DAB)
- Cell identity (cytokeratin), state (Ki67), diagnostic algorithms, predictive biomarkers (Her2, PD-L1)

Multiplex Immunofluorescence (mIF)



- Multiple protein detection
- Deeper cell phenotyping
- Wider expression range
- Intercellular interactions and networks



## At the Heart of Ultivue are Two Core Technologies

Combine to form an integrated, high-throughput analytical platform



#### Massively parallel single-molecule amplification

- Highly configurable multiplexed biomarker detection
- Clinical-grade assay performance
- Fast and gentle high-throughput workflow





#### Deep learning enabling faster image-to-insight

- Biomarker morphology and signal intensity-driven cell classification
- Highly scalable and adaptable image processing
- Enables precise accurate results faster at a lower cost

# Ultivue

#### Next Generation Integrated "Samples-to-Insights"

#### mIF Image

- Configurable panels of <12 targets
- Simple high-throughput workflow
- High specificity & dynamic range



#### InSituPlex<sup>®</sup> (ISP) Overview: Fast and Simple Workflow The TME is Complex: Your Assay Shouldn't Be!



Dewax & Antigen Retrieval



Antibody Binding



**Direct detection of target sites** 1° Ab-DNA conjugates: high specificity



#### InSituPlex<sup>®</sup> (ISP) Overview: Fast and Simple Workflow The TME is Complex: Your Assay Shouldn't Be!





visualization No post-processing: accurate co-localization of markers with high dynamic range

## Ultivue

#### InSituPlex<sup>®</sup> (ISP) Overview: Fast and Simple Workflow The TME is Complex: Your Assay Shouldn't Be!





Preserves tissue morphology

### Next Generation Integrated "Samples-to-Insights"

#### mIF Image

- Configurable panels of <12 targets
- Simple high-throughput workflow
- High specificity & dynamic range

- Image Stacking
- Robust co-registration, micron-level accuracy
- Extremely high throughput (100's of samples/hr)
- Nearly perfect co-registration even with large tissue defects









### Essentially perfect IF co-registration even with image defects



#### **Detail view**

*This is NOT just a single DAPI image* 

It is a <u>composite</u> of the two DAPI scans of the same slide.



#### Essentially perfect IF co-registration even with image defects



## AI: H&E matching using a Generative Adversarial Network (GAN)

We have trained AI models which accurately predict the appearance of the IF DAPI from an H&E brightfield scan. We then use this AI "DAPI" to co-register with the IF DAPI for **subcellular accuracy multimodal stacking**.



Models were created using Ultivue's extensive catalog of images produced by our lab

Jltivue

• H&E matching is fully automatic: does not require any input from the user

#### Co-registration of mIF and brightfield (H&E) images with high precision



Note: Good results even in the vicinity of tissue loss or poor focus



# ISP facilitates high resolution cellular phenotyping through co-detection of multiple biomarkers in a single cell



#### Next Generation Integrated "Samples-to-Insights"

#### mIF Image Image Stacking Image Analysis **Biological Insights** Configurable panels of <12 targets Robust co-registration, micron-level accuracy · Deep-learning enabled whole-slide analysis · Intercellular dynamics: ROIs vs. whole section Simple high-throughput workflow • Extremely high throughput (100's of samples/hr) Highly scalable cloud-based infrastructure · Advanced spatial phenomics: Clinical data High specificity & dynamic range Nearly perfect co-registration even with large · Custom phenotyping through robust cointegration, Endpoint analysis, Cohort-level tissue defects detection of multiple biomarkers data stratification, and more, Sample **InSituPlex**<sup>®</sup> **STARVUE**<sup>™</sup> *Multiplex Assay* Image Data Science UltiStacker.Al<sup>™</sup> UltiAnalyzer.Al<sup>™</sup> **Spatial Phenomics Image Analysis** Image data science Image Co-registration

Spatial Tissue Analytics and Reporting

#### **Image Analysis: Input**



Stacked mIF Image with optional same-section H&E

# Ultivue

## **Image Analysis: Semantic Segmentation**





Stacked mIF Image with optional same-section H&E

**Tissue Segmentation** 



UltiAnalyzer.Al<sup>™</sup> Image Analysis





DAPI

Ultivue

### **Image Analysis: Semantic Segmentation**



**Tissue Segmentation** 

Region Segmentation: Tumor vs Stroma



UltiAnalyzer.Al<sup>™</sup> Image Analysis







### **Image Analysis: Instance Segmentation**



Tissue Segmentation

Region Segmentation: Tumor vs Stroma

**Cell Segmentation** 



UltiAnalyzer.Al<sup>™</sup> Image Analysis









#### Image Analysis: Object Detection



**Tissue Segmentation** 

Region Segmentation: Tumor vs Stroma

**Cell Segmentation** 

Marker Positive Classification



UltiAnalyzer.Al<sup>™</sup> Image Analysis





DAPI CD3



**U** Ultivue

#### **Image Analysis: Expert Annotations**



Tissue Segmentation

Region Segmentation: Tumor vs Stroma

**Cell Segmentation** 

Marker Positive Classification without thresholds

Expert Annotations: ROIs or Exclusions

Post IA

Flexible phenotyping based on marker positive information

## **Superior Sensitivity and Robustness with Deep Learning**

Deep Learning for all analysis tasks including cell classification





DAPI PD1

Ultivue



Unprecedented cell detection in difficult regions where threshold-based methods fail.

With Deep Learning:

- Improved accuracy
- Reduced need for manual feature engineering
- Ability to handle complex data
- Deep Learning algorithms improve with growing training data
- Pre-trained on proprietary InSituPlex® data

**U** Ultivue

## **Superior Sensitivity and Robustness with Deep Learning**

UltiAnalyzer.Al<sup>™</sup> Image Analysis

Deep Learning for all analysis tasks including cell classification





#### High expressers

### Superior Sensitivity and Robustness with Deep Learning Diversity of shapes



PD-L1 PD-L1 CD68 **CD**68 PD-L1 FoxP3 CD4 CD4



## Model performance on manual annotated validation data

All detection models > 0.8 Lin's Correlation Global Lin's Corr: 0.954

Detection counts vs ground truth counts



| Marker     | Lin's Corr | F1-score |
|------------|------------|----------|
| CD3        | 0.990      | 0.916    |
| CD8        | 0.861      | 0.861    |
| PD1        | 0.870      | 0.806    |
| Granzyme B | 0.901      | 0.833    |
| CD20       | 0.913      | 0.747    |
| CD4        | 0.942      | 0.802    |
| CD68       | 0.955      | 0.703    |
| CD163      | 0.828      | 0.685    |
| PD-L1      | 0.922      | 0.746    |
| FoxP3      | 0.940      | 0.875    |
| Ki67       | 0.834      | 0.803    |
| CD11b      | 0.989      | 0.686    |
| CD14       | 0.945      | 0.617    |
| CD15       | 0.925      | 0.731    |



UltiAnalyzer.Al<sup>™</sup> Image Analysis

## **Spatial Image Analysis**







Image Analysis

#### Next Generation Integrated "Samples-to-Insights"

#### mIF Image Image Stacking Image Analysis **Biological Insights** Configurable panels of <12 targets Robust co-registration, micron-level accuracy · Deep-learning enabled whole-slide analysis · Intercellular dynamics: ROIs vs. whole section Simple high-throughput workflow • Extremely high throughput (100's of samples/hr) Highly scalable cloud-based infrastructure · Advanced spatial phenomics: Clinical data High specificity & dynamic range Nearly perfect co-registration even with large · Custom phenotyping through robust cointegration, Endpoint analysis, Cohort-level tissue defects detection of multiple biomarkers data stratification, and more. Sample **InSituPlex**<sup>®</sup> **STARVUE**<sup>™</sup> *Multiplex Assay* Image Data Science UltiStacker.Al<sup>™</sup> UltiAnalyzer.Al<sup>™</sup> **Spatial Phenomics Image Analysis** Image data science Image Co-registration

#### Assay verification with 12-plex OmniVUE<sup>™</sup> panel

| Round | Counter | FITC | TRITC      | Cy5   | Cy7    |
|-------|---------|------|------------|-------|--------|
| 1     | DAPI    | Ki67 | Granzyme B | Lag3  | HLA-DR |
| 2     | DAPI    | CD8  | PD-1       | FoxP3 | CD11c  |
| 3     | DAPI    | CD3  | CD4        | CD20  | СК     |







#### **Intra- and Inter-Day Reproducibility**

Image Analysis



Mean positive signal intensities Positive cell densities Intra vs. Inter-day analysis

Ultivue



LINK



## **CV** Calculation and Assessment Criteria



#### **Coefficient of Variation**

Mean signal intensity/density over all detected cell objects was calculated for each image. The Coefficient of Variation (CV) is calculated for each marker across all images of the same replicate (see previous slide). Finally, to obtain one CV per marker, the mean of all per-replicate CVs is calculated.

#### Assessment Criteria



Staining is within the acceptable range of variability given an aggregate CV of **20% or less.** 

#### Highly consistent biomarker detection in 12-plex panels

#### **Mean positive signal Intensities**



#### **Positive cell densities**



## Ultivue

#### Highly consistent biomarker detection in 12-plex panels

#### Mean positive signal Intensities

**U** Ultivue

**Positive cell densities** 

| Marker    | Intra-day CV | Inter-day CV  | Marker    | Intra-day CV | Inter-day CV |
|-----------|--------------|---------------|-----------|--------------|--------------|
| CD11C     | 9.88         | 7.46          | CD11C     | 5.11         | 5.1          |
| CD20      | 4.77         | 5.53          | CD20      | 2.22         | 1.73         |
| CD3       | 9.18         | 7.6           | CD3       | 6.8          | 4.02         |
| CD4       | 10.99        | 11.28         | CD4       | 14.11        | 10.82        |
| CD8       | 6.61         | 5.61          | CD8       | 5.24         | 3.09         |
| CK-Sox10  | 6.64         | 6.38          | CK-Sox10  | 6.99         | 6.36         |
| FoxP3     | 13.32        | 15.45 Max. CV | FoxP3     | 13.06        | 12.72        |
| GranzymeB | 6.48         | 7.02          | GranzymeB | 6.91         | 5.86         |
| HLA-DR    | 10.18        | 12.53         | HLA-DR    | 4.35         | 4.84         |
| Ki67      | 7.55         | 7.59          | Ki67      | 3.79         | 3.68         |
| Lag3      | 3.26         | 4.51          | Lag3      | 8.69         | 9.88         |
| PD-1      | 8.62         | 6.7           | PD-1      | 9.3          | 5.45         |

## Summary

- Flexible multiplexed immunofluorescence (mIF) solutions are essential for tailoring multiplex assays to precisely fit the unique demands of tumor microenvironment research within clinical trials.
- **mIF allows** the study of cell sub populations and their spatial interaction.
- **InSituPlex®** assay is highly sensitive, customizable, and reproducible.
- Specialized computational tools are required to analyze mIF images due to their complexity and size challenges.
- **Deep Learning** robust and highly automated image analysis without manual thresholding, improving consistency and throughput.
- End-to-end workflow from assay to quantitative cellular data shows excellent reproducibility.

