

UMC Utrecht

Reaching Production-level Mitosis Detection Performance through Competitive Challenges

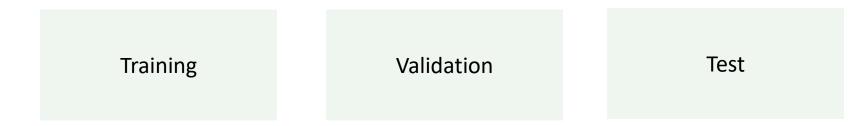
Nikolas Stathonikos

Principal Investigator AI development & Implementation London – December 2023

"Holy trinity" of subsets in machine learning

Training	Validation	Test
Used to find the optimal parameters of the model	Used to find the optimal model (hyper-parameters)	Used to estimate the performance of the optimal model
w	$f(\cdot)$	$ \hat{y} - y $

However, poor experimental practice is difficult to detect



Repeatedly evaluating models on the test set Creating new subset divisions that "work"

Different studies use different evaluation metrics and test datasets, which makes comparison difficult

Grand Challenges

Opening your data AND ensuring fair use:

Medical image analysis challenges

Friendly competitions in which researchers evaluate their solutions on the **same data** with the **same criteria**, in a **blinded manner**.

The obvious solution: open source and open datasets.

However, this puts the "burden of proof" on the community instead on the authors.

Problematic in very active fields such as machine learning and medical image analysis.

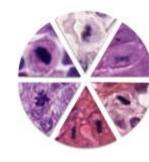
Grand challenges

Setting up a challenge

- 1. Define a task
- 2. Curate a dataset
- 3. Publish the dataset
- Publish a clear evaluation procedure
- Invite researchers to submit methods
- (optional) Organize a challenge workshop

Assessment of Mitosis Detection Algorithms 2013 AMIDA13 | MICCAI Grand Challenge

Predicting breast tumor proliferation from whole-slide images: The TUPAC16 challenge



MIDOG 2021

Mitosis Domain Generalization

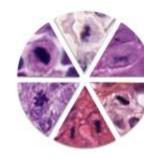
miccal202

Mitosis challenges in the past

- MITOS12
- AMIDA13
- MITOS-ATYPIA14
- TUPAC16
- MIDOG21
- MIDOG22

Assessment of Mitosis Detection Algorithms 2013 AMIDA13 | MICCAI Grand Challenge

Predicting breast tumor proliferation from whole-slide images: The TUPAC16 challenge



MIDOG 2021

Mitosis Domain Generalization

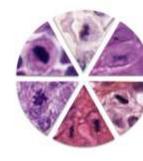
miccal202

Mitosis challenges in the past

- MITOS12
- AMIDA13^{*}
- MITOS-ATYPIA14
- TUPAC16
- MIDOG21
- MIDOG22

Assessment of Mitosis Detection Algorithms 2013 AMIDA13 | MICCAI Grand Challenge

Predicting breast tumor proliferation from whole-slide images: The TUPAC16 challenge



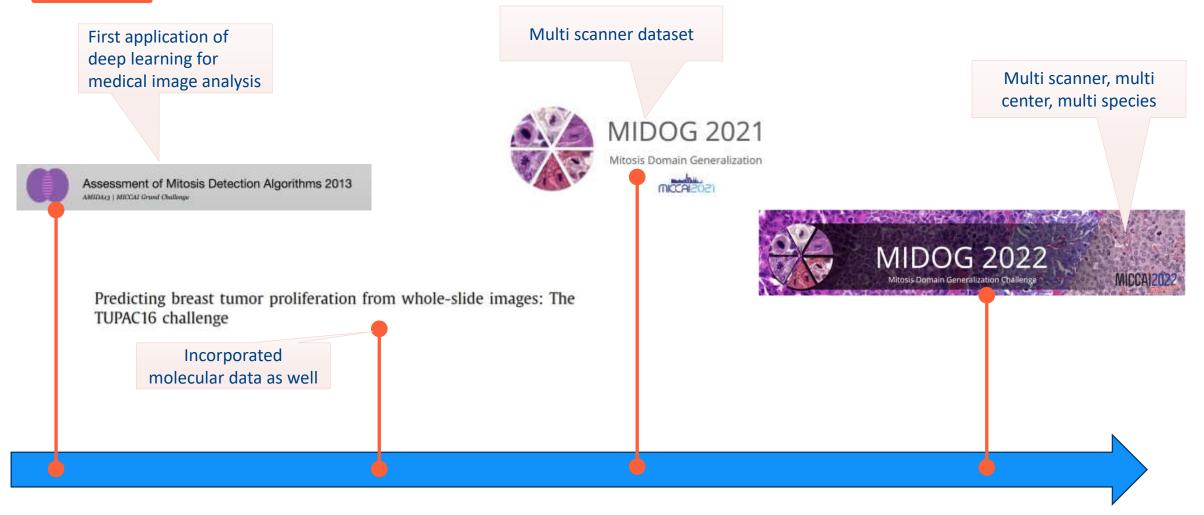
MIDOG 2021

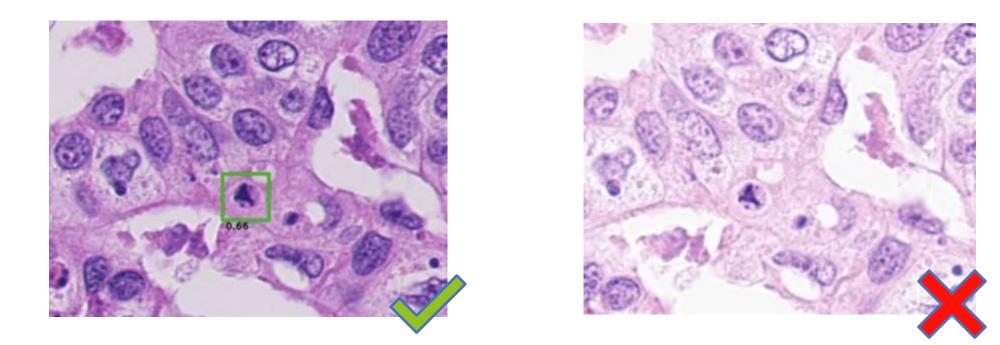
Mitosis Domain Generalization

กเรียม

Timeline of Mitosis challenges through the years

Timeline of Mitosis challenges through the years





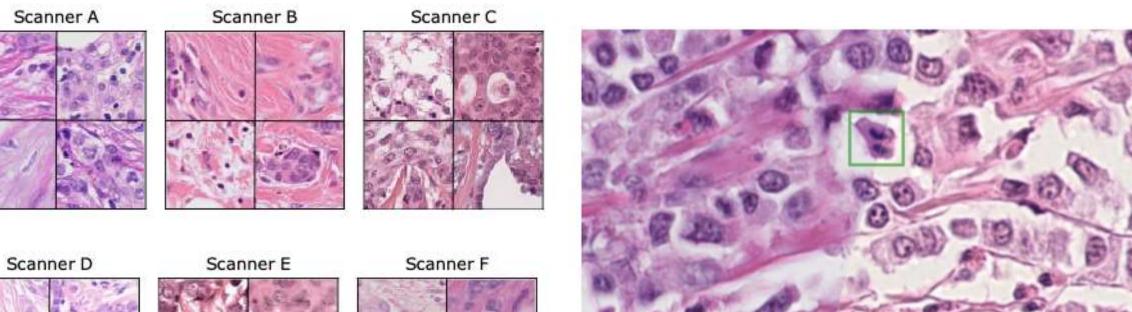
Create a scanner-invariant mitosis detection algorithm

MIDOG is Born!

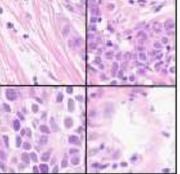
Organizers

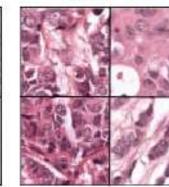
Marc Aubreville	realisate notisatule ingostadi, dermany
Christof Bertram	Institute of Pathology, University of Veterinary Medicine, Vienna, Austria
Mitko Veta	Medical Image Analysis Group, TU Eindhoven, The Netherlands
Nikolas Stathonikos	Pathology Department, UMC Utrecht, The Netherlands
Robert Klopfleisch	Institute of Veterinary Pathology, Freie Universität Berlin, Germany
Katharina Breininger	Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander- Universität Erlangen-Nürnberg, Germany
Natalie ter Hoeve	Pathology Department, UMC Utrecht, The Netherlands
Francesco Ciompi	Computational Pathology Group, Radboud UMC Nijmegen, The Netherlands
Andreas Maier	Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

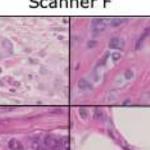
Overview of dataset



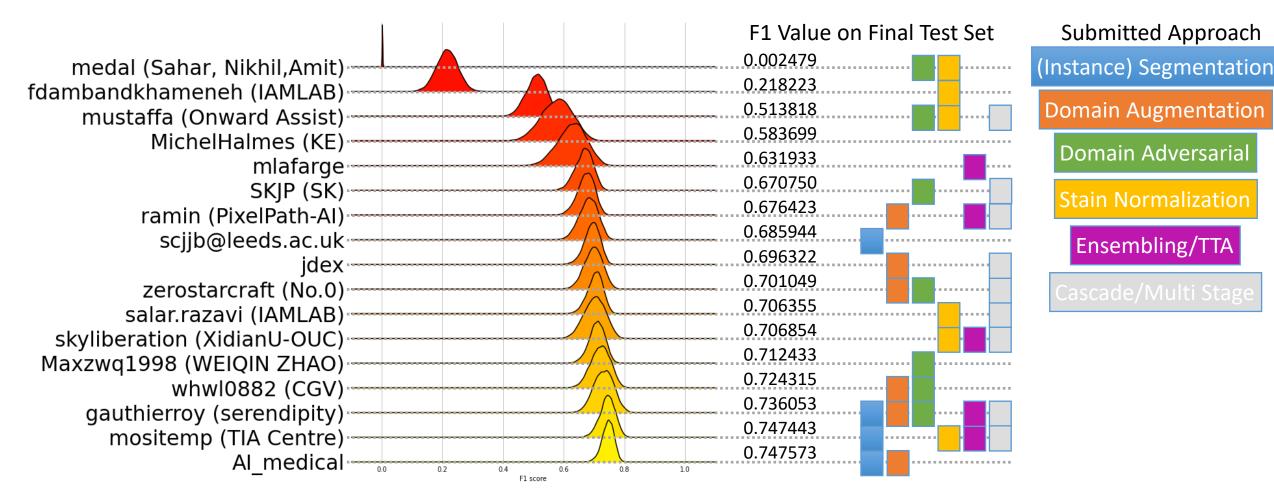
Same image – different scanners







Results



Examples of detections

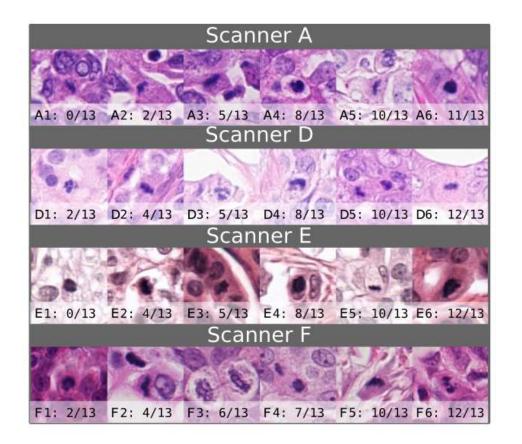


Fig. 8. Examples of ground truth mitotic figures (true positives and false negatives), ordered by the count of models voting for it. The numbers (x/13) indicate, how many models voted for this cell to be a mitotic figure. The rows are stratified by the number of models to give examples for the complete distribution in Fig. $\boxed{2}$.

2M2

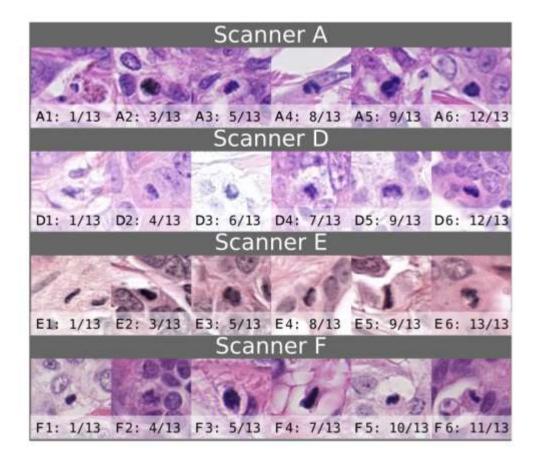
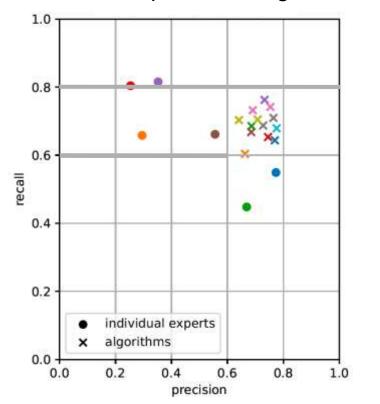


Fig. 9. Examples of false positives, ordered by the count of models voting for it. The numbers (x/13) indicate, how many models voted for this cell to be a true mitotic figure.

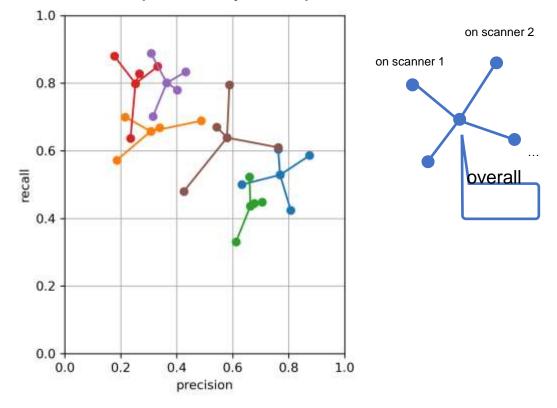
Comparison to human experts



Results of experts and algorithms

Human experts were much less consistent.

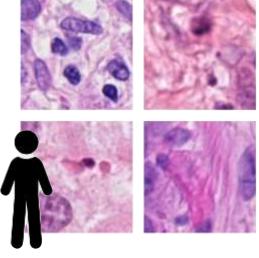
Scanner-dependency of experts



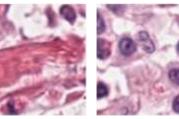
... and were also strongly domain dependent.

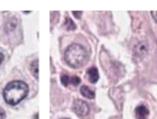
MIDOG 2022: Training set

human breast cancer

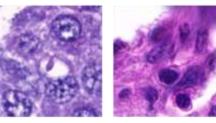


canine cutaneous mast cell tumor



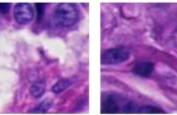


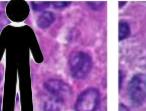
canine lung cancer

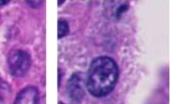




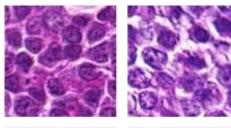
human neuroendocrine tumor

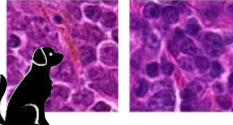




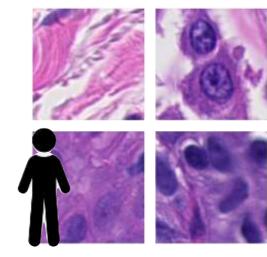


canine lymphoma

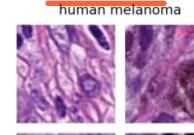


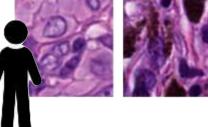


human melanoma

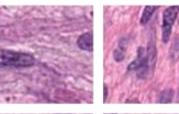


MIDOG 2022: Test set

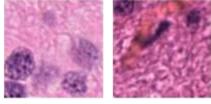


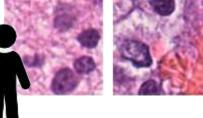


human meningioma



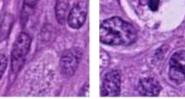
human astrocytoma

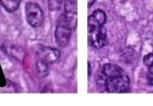




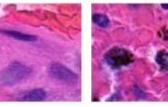
human colon carcinoma

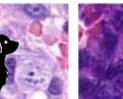
human bladder carcinoma

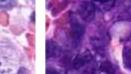


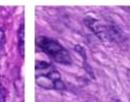


canine hemangiosarcoma

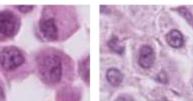




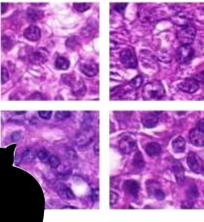




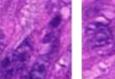
canine breast cancer canine cutaneous mast cell tumor



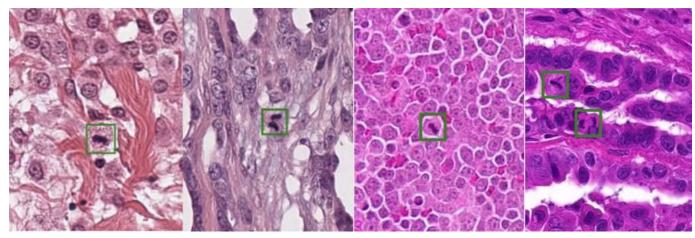
feline lymphoma



18

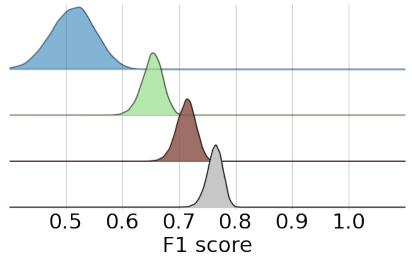


Performance on different tissue

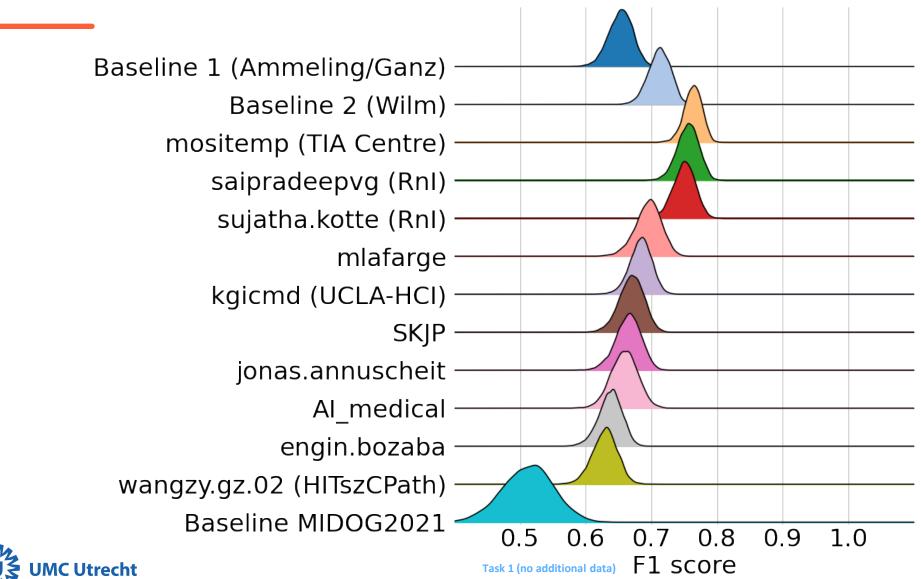


Note: Also includes differences in tissue processing, species, and scanners.

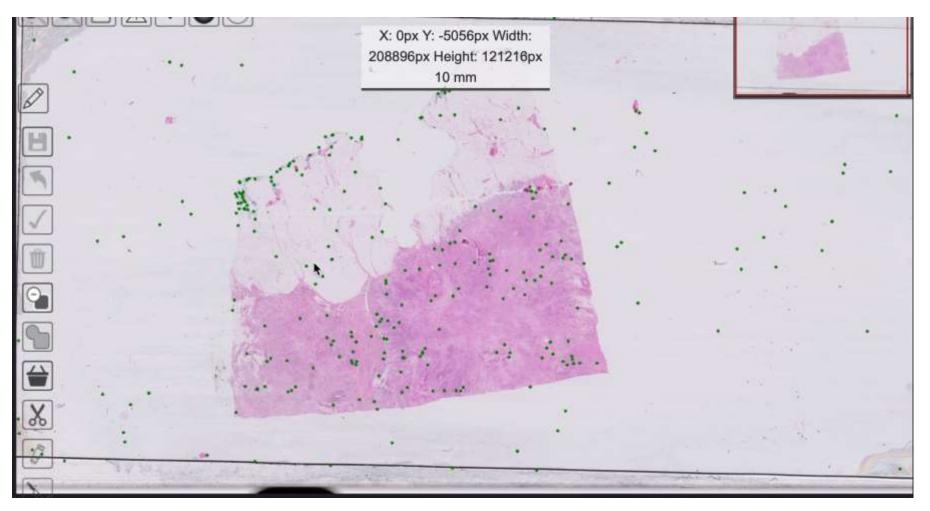
Trained on breast cancer (4 scanners) Trained on 6 tumor types Trained on 6 tumor types + adversarial Winner (augmentation+ensembling)



Results MIDOG22



Robustness on WSIs



Grand challenges can stimulate the production of nice models!

And then?

Mitosis detector in clinical practice

tate artists instar 2 actuals in 3 form

Mitosis detector in clinical practice

Machine learning models in PACS Pathology. Using PACS API we have implemented an AI model that can detect mitotic cells in breast cancer slides.

Model in the background

The model is monitoring all incoming scans. When a scan fits the criteria, a job is sent to the HPC to analyze that scan. Average time from scan to results: **7 min**

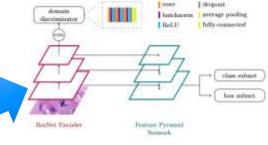


Fig. 2: Domain adversarial RetinaNet architecture.

Iceberg of AI implementation

AI in pathology

- Improve reproducibility
- Quantitative diagnosis
- Specialist support
- Improve turnaround

AI result on screen

Heatmaps, coordinates, annotated regions Structured reporting Case worklist prioritized

Iceberg of AI implementation

Al in pathology

- Improve reproducibility
- Quantitative diagnosis
- Specialist support
- Improve turnaround

Validation

IVDR, MDR, ISO, Quality registry

Processes

Model retraining, registry, Experiment registry AI model triggering, workflow, job scheduling

Hardware

GPUs, CPUs, storage, databases to run AI models, save results Nvidia vs ASICs

AI result on screen

Heatmaps, coordinates, annotated regions Structured reporting Case worklist prioritized

Design choices

Workflow or user initiated? Heatmap or coordinates?

Software

Code repositories, integrations with various LIMS

Platform choice

Tensorflow, PyTorch, MXnet Tensorflow serving, NVIDIA Triton Inference Server, Ray [Serve], Docker, Kubernetes

Validating for clinical use

- Performance in clinical setting?
- IVDR or MDR?
- Safety?

Documents >	General > Projectdocumentatie
D	Name \checkmark
-	Fase 1 - Idee
-	Fase 2 - Verkenning
	Fase 3 - Lab
	Fase 4 - implementatie

Validation dossier

Validating for clinical use

1

Ρ	ha	se

Classification medical device/software

Business case

Phase	2
-------	---

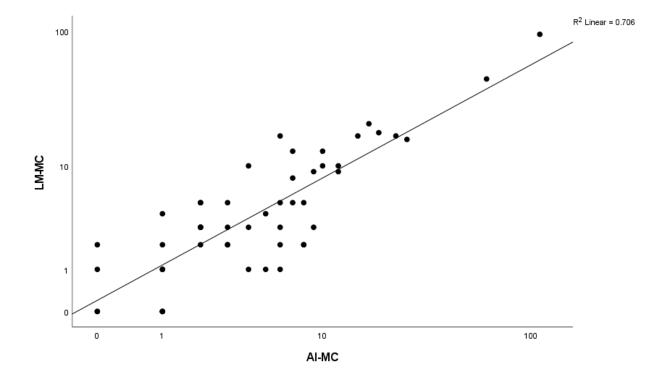
Data report Model acceptation criteria Al impact assessment Software

development according to quality system Product development Architecture diagram Risk assessment End user engagement 1st Pilot

Phase 3

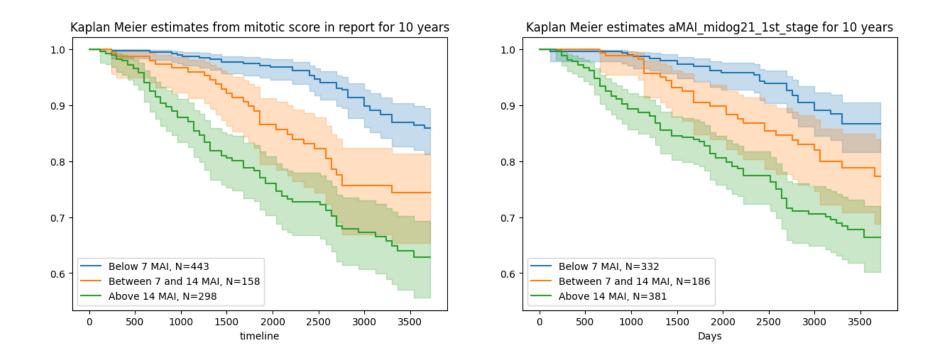
2nd pilot Technical implementation

Internal Validation

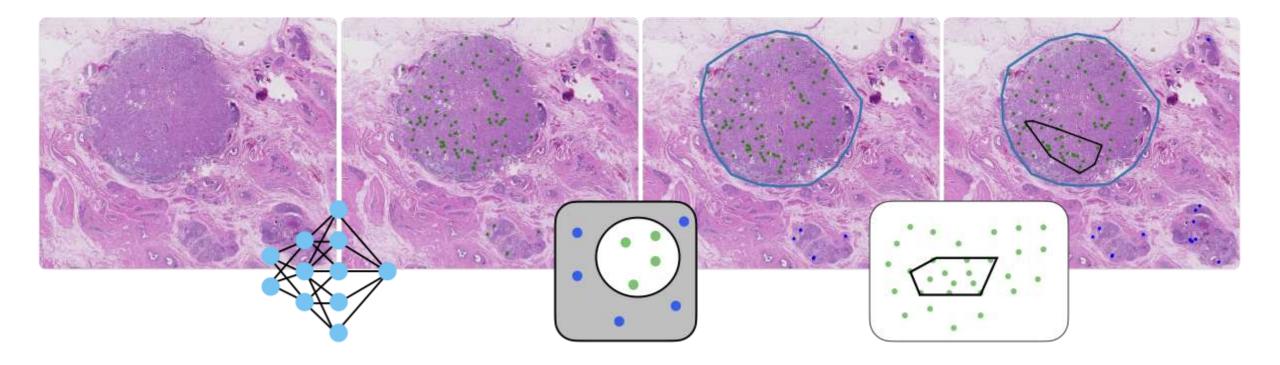


- Compare it to current standard
- Use multiple observers

Bonus validation



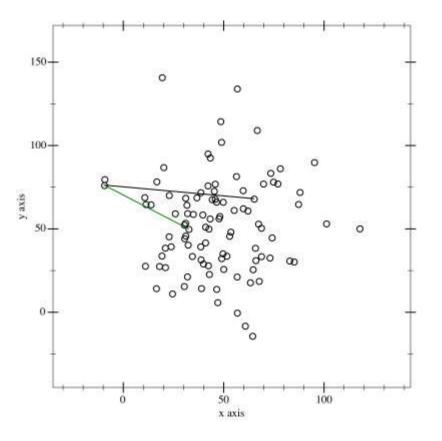
Workflow of mitotic detector in production



Automatic area selection - aMAI

To find the MAI area, we developed an algorithm that can find a fixed area of 2mm² with the most mitosis. Sounds simple but it is surprisingly difficult.

Most published research relies on fixed shapes (rectangles, circles etc)



Detector in action

PACS integration

- Runs in background results waiting for pathologist
- Goal analysis <10'
- Pathologist can correct the output ultimately

responsible

- MongoDB running in the background
- Capturing all results + delta
- Model degradation monitoring
- Service monitoring

Future planning

- Expand from breast only to generic mitosis detection
- Improve model based on analyzed cases
- Add different metrics/improve diagnostic standards (mitosis per 1000 cells instead of area)
- Add more classification options (atypical vs typical)

Thank you for your attention!

