How Digital pathology can help to speed-up Biomarkers detection in Pharma Research ?

10th Digital Pathology & Al congress : Europe

Carole CHOTARD, PhD Head of the Histopathology Pole NonClinical Safety Unit – Translational Medicine

08/12/2023

Servier Pharmaceutical Company

Foundation

- > 21400 employees within the Group
- > More than **20%** of our revenue in Research and Development
- > 30 medicines available to patients in over 150 countries
- New R&D Center opened in Feb 2023 (Paris/Saclay Campus) with the Research, Translational Medicine & Clinical departments

RESEARCH AND DEVELOPMENT Translational Medicine

SERVIER

Servier Pharmaceutical Research – Paris Saclay Campus

Histopathology Pole -> Projects involvement (Nov 2023)

Histopathology Pole -> Organization (13 team members)

Head : Carole CHOTARD

RESEARCH AND DEVELOPMENT

+ Daniela APOSTOL (trainee) (2 months)

Translational Medicine

Histopathology Pole -> Missions

Main activities

- > DEVELOP AND APPLY Histological and in situ tissue biomarker detection methods (human and animal samples)
- > **SUPPORT** preclinical model characterization
- CHARACTERIZE tissular expression profiles of targets and biomarkers at DNA, RNA or protein levels Preclinical, Pharmaco-Toxicology and Clinical project
- > **DEVELOP AND APPLY** automated Digital Image Analysis
- > ANALYSIS AND EXPERTISE in Pathology (External and internal collaborations)
- IDENTIFY TARGET ORGANS IN PRECLINICAL TOXICOLOGY at tissular levels (Necropsy and Histology) in collaboration with the Toxicological pathologist
- SCIENTIFIC AND TECHNICAL WATCH, technological innovation for the characterization of biomarkers and acceleration of their application in translational research and clinical development

Histopathology Pole -> Expertises and workflow

Examples of projects where Digital Pathology is helping us to speed-up Biomarker detection (Machine and Deep-Learning approaches)

1. Chromogenic Immunohistochemistry

- Preclinical model characterization (Visiopharm Software)
- Biomarker detection in multiple Diseases using Tissue Micro Arrays (TMAs) (Visiopharm Software)

2. Multiplex Immunohistochemistry

- Akoya Technology (HALO Software)
- Lunaphore technology (HALO Software)

3. RNAscope

Toxicological biomarker detection (HALO software)

4. Deep-learning approach

- Germinative centers in Human tonsil (Visiopharm Software)
- > Purkinje cells in mouse brain (Visiopharm Software)

RESEARCH AND DEVELOPMENT Translational Medicine

Histopathology pole -> Chromogenic Immunohistochemistry Oncology project

PDAC PDX in mouse

TRT target RNAi anti-marker1

Laurent Rutault Erik Mire

Ventana/Roche

PDAC PDX in mouse Non TRT **anti-marker1**

PRECLINICAL MODEL CHARACTERIZATION

> Quality evaluation of the H&E sections : Dr Boivin (Human Pathologist)

Quantification

with Visiopharm software

Quantification using Visiopharm software (Machine & Deep Learning approaches)

Translational Medicine

AND DEVELOPMENT

RESEARCH

control treated

Histopathology pole -> Chromogenic Immunohistochemistry Oncology project

DISEASE UNDERSTANDING TARGET IDENTIFICATION AND VALIDATION **Nathalie Ridoux Johann Richard**

Ventana/Roche Nanozoomer

Marker expression in Human Multi-cancer Tissue Micro Array (TMA)

RESEARCH **AND DEVELOPMENT Translational Medicine**

Positive cells density

Speed-up quantification of protein marker using Visiopharm Software

Histopathology pole -> Multiplex Immunohistochemistry – Oncology project

Human tonsil

TARGET IDENTIFICATION AND VALIDATION

Pancreatic Cancer

DAPI Marker 1 OPAL 480 Marker 2 OPAL 520 Marker 3 OPAL 570 Marker 4 OPAL 690 Marker 5 OPAL 620

Ventana/Roche Phenolmager (Akoya)

Graphic of each marker's density on Human Tonsil for validation

Quality evaluation of the H&E sections : Dr Boivin (Human Pathologist)

Quantification of the biomarkers (density, percentage of expression and co-expression) using HALO software with Spatial distribution of the biomarkers in the tumor microenvironment

Collaboration with the Genomics platform for Spatial Transcriptomics

Translational Medicine

AND DEVELOPMENT

RESEARCH

Histopathology pole -> Multiplex Immunohistochemistry – Immuno-Oncology project LUNAPHORE Team

TARGET IDENTIFICATION AND VALIDATION

RESEARCH AND DEVELOPMENT Translational Medicine

Histopathology pole -> Multiplex Immunohistochemistry – Immuno-Oncology project

PROPATH

TARGET IDENTIFICATION AND VALIDATION

 Spatial cell distribution evaluated by quantification (HALO software) (ongoing)

DISTRIBUTION

SPECIAL PATTERNS

RESEARCH AND DEVELOPMENT Translational Medicine

SERVIER

Histopathology pole -> RNAscope - Neurosciences project

VALIDATION OF TOXICOLOGICAL BIOMARKERS

Marker 1 mRNA

Marker 1 mRNA

RESEARCH AND DEVELOPMENT Translational Medicine

SERVIER*

Sonia Simoes Karine Albinet Nelly Sourioux Erik Mire

Ventana/Roche Nanozoomer

Histopathology pole -> RNAscope - Neurosciences project

VALIDATION OF TOXICOLOGICAL BIOMARKERS

- > Quality evaluation of the H&E sections and Marker 1 mRNA distribution : Dr Pasello Dos Santos (Toxicologist Pathologist)
- > Speed-up quantification of mRNA marker in several species and organs using **HALO software** (Machine Learning)

H-score = (1x %cells Low) + (2x %cells Medium) and (3x %cells High)

SERVIER

Translational Medicine

AND DEVELOPMENT

RESEARCH

Oracle Bio

Histopathology pole -> Deep learning approach (Visiopharm software)

Automatic detection of germinative centers in human tonsils for all type of stained slides (H&E, IHC, RNAscope, ...)

RESEARCH AND DEVELOPMENT Translational Medicine

SERVIER

Histopathology pole -> Deep learning approach - Neurosciences project

Manual annotation of mouse cerebellum

Automatic detection of Purkinje cells and quantification (Deep learning Visiopharm software) (ongoing)

Histopathology pole ->Chromogenic Immunohistochemistry – Oncology clinical study

Karine Albinet Nathalie Ridoux Erik Mire

EVALUATE EFFICACY OF A TREATMENT AND TARGET ENGAGEMENT

Marker A protein expression in AML

RESEARCH AND DEVELOPMENT

Translational Medicine

- Quality evaluation of the H&E sections : Dr Boivin
- > Quantification of the biomarkers before stratification of patients : Dr Boivin
- No involvement so far of AI in our internal clinical studies

Conclusions & Perspectives

Work closely with pathologists for the quality evaluation of our tissue sections, validation and distribution of the biomarkers in the tissue.

Two aspects of Digital Pathology in our workflow :

1. Computer based virtual slides review by the pathologist instead of a microscope (Slides digitalization, Calopix web application to visualize scanned microscope slides)

2. Artificial Intelligence (AI) techniques : Machine Learning (ML) and Deep Learning (DL) models

Contributions of AI in our workflow :

✓ Reduce variability observed in Manual Pathology and improve biomarker measurement.

✓ Allows more complex analysis of a large amount of data (Multiplex IHC to evaluate expression, co-expression and distribution of several markers)

- Contribution to decrease the amount of tissue requested (multiplex IHC), specially for biopsies
- ✓ Evaluate a bigger amount of biomarkers in Disease Understanding in a shorter time (TMAs, automatic Image Analysis)
- ✓ Use more and more deep-learning approaches in the future

 \checkmark Evaluation of virtual stainings for futures projects to decrease the amount of work and use of tissue.

AND DEVELOPMENT Translational Medicine

Karine ALBINET

Mélanie COLLET

Soror GHALI

Jérémy LAVIGNE

Erik MIRE

Nathalie RIDOUX

Laurent RUTAULT

Sonia SIMOES

Nelly SOURIOUX

Johann RICHARD

Guillaume DARET

IT people

Nadia BONAMOUR

Dr Jean-François BOIVIN Dr Flavia PASELLO DOS SANTOS

SERVIER

Translational Medicine

AND DEVELOPMENT

RESEARCH

